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Abstract—A steady state model of the temperature regime of airships and hot air balloons shells is
developed. The model includes three governing equations : the equation of the temperature field of airships
or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the
integral equation for the natural convective heat exchange between the shell and the internal gas. In the
model the following radiative fluxes on the shell external surface are considered : the direct and the earth
reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of
the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the
atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the
cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical
iterative procedure is developed. The model and the numerical procedure are used for the simulation study
of the temperature fields of an airship shell under the forced and the natural convective heat transfer.

1. INTRODUCTION

THE DEVELOPMENT of airships and hot air balloons
needs the calculations of the temperature fields of
the shell and the internal gas for the purpose of the
predesign determination of the thermal operating con-
ditions. The model, allowing the evaluation of the
average temperatures of the shell and the internal gas
of hot air balloons was developed in ref. [1]. The
model of ref. [1] includes the integral radiative and
convective heat transfer fluxes and does not obtain
the temperature field of the shell.

This paper is devoted to the developing of the steady
state heat exchange model of the airships and the hot
air balloons which includes surface distributions of
the radiative and convective heat {ransfers factors and
allows the calculation of the temperature field of the
shell and the average temperature of the internal gas.
For this purpose the following radiative fluxes are
taken into account : the direct and the earth reflected
solar radiation, the diffuse solar radiation, the infra-
red radiation of the earth surface and that of the
atmosphere. For the calculations of the infrared exter-
nal radiation the model of the plane layer of the atmo-
sphere is used. The convective heat transfer on the
external surface of the shell of the airship is considered
for the cases of the forced and natural convection.
The distribution of the forced convection heat transfer
coefficient on the external surface of the airship shell
is calculated in the approximation of the boundary
layer theory. The distribution of the natural con-
vection heat transfer coefficient on the external surface
of the airship shell is calculated by means of the natu-
ral convection criterion dependence for the local
Nusselt number from the horizontal cylinders. The
evaluation of the internal heat transfer coeflicient

inside the shell is obtained from the natural convection
criterion dependence for the Nusselt number in the
horizontal cylinders.

This model is of practical interest for airship and
hot air balloon shell design if the upper or lower
operating limits for the temperature of the shell
material take place. Besides, the average temperature
of the internal gas determines the lifting force and
must be known for the predesign evaluations of the
altitude control means of apparatus.

2. FORMULATION OF THE STEADY STATE
MODEL

The temperature fields of the airships and of the
hot air balloons are determined by the radiative and
convective heat exchange factors (Fig. 1). The
incoming energy includes the solar and the infrared
radiations fluxes. The heat removal is determined by
the convective and radiative heat transfer. The shells
of the airships and hot air balloons can be considered
as thermally thin bodies because the shells” cross-
sectional Biot number is small:

pi= Bith)o (1)
k
where & is the shell thickness, /, and /, are the mean
values of the convective heat transfer coefficients for
the external and internal surfaces of the shell and 4 is
the conductivity of the shell.

This condition allows one to neglect the cross-sec-
tional second-order temperature derivative and to
present the surface heat exchange conditions in the
form of the distributions of heat sources in the tem-
perature field equation.
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NOMENCLATURE
e distance between the radiation Q. internal heat source power [Wt]
reception and emitting points [m] Ra,  local Rayleigh number
a; spectral infrared atmosphere R(Z) radial coordinate of the shell surface [m]
absorptivity [m ] S area of the heat cxchange surface of the
As total solar spectrum shell external surface shell [m?]
absorptivity AS,,, arca of the shell element surface [m?)
Bi Biot number Ar,  time of the heat exchange conditions
C,  specific heat of the internal gas [Tkg™ 'K~ '] changes [s]
C,  specific heat of the shell [Jkg 'K '] At,  thermal time constant of the internal gas
d, earth surface albedo {s]
D, reduced diameter of the shell [m] At,,  thermal time constant of the shell [s]
e sun direction vector T temperature of the shell [K]
€. earth direction vector T, ambient temperature [K]
E,;  radiosity flux intensity [Wtm ™7 T, temperature of the earth surface [K]
E,,  spectral intensity of the black body T, average temperature of the internal gas
radiation [Wt m™7] K}
E., reflected infrared monochromatic T.. clements temperatures [K]
radiation flux of the earth surface T*  reduced ambient temperature [K]
[Wim 7] AT  difference between the average shell
E*  incident infrared monochromatic temperature and the temperature of
radiation flux from the atmosphere on the air or the internal gas
the earth surface level [Wtm ™% U motion speed of the airship [ms™']
E, solar radiation flux intensity [Wtm™ 7] 4 internal volume of the shell [m?]
dF, ., angle factor between the shell point and o, direction vectors
the earth surface w* vector opposite to @
F._,. angle factor between the element and the x, vz, % §, 2 Cartesian coordinates
earth surface Az,  axial coordinate difference of the shell fm].
Fom_wm €lements angles factors
g gravitational constant fms™7) Greek symbols
h altitude coordinate [m)] 2 angle between the shell surface external
h* total average heat transfer coefficient vector and the vertical direction
[Wtm 7 B polar coordinate
Ro iy limits of the altitude integrating in B air thermal expansion coefficient [K ']
RTE [m] J thickness of the shell [m]
h, external convective heat transfer AB.. polar coordinate difference of the shell [m]
coefficient [Wtm 2K~ 1] Ak, infrared radiation interval [m]
by internal convective heat transfer £.5, emissivities of the external and internal
coefficient [Wtm 2K ') surfaces of shell
I mean value of 2, [Wtm™ 2K~ '] g earth surface spectral emissivity
i, mean value of i, (Wtm K] f,y  sun direction angles
H altitude of the drift [m] K proportionality coefficient between the
k conductance [Wim™ 'K '] solar direct and diffuse radiation
k, conductance of the internal gas A wavelength [m]
Wim 'K Vai kinematic viscosity of the air [m®s" ']
i circumferential length [m] Py internal gas density [kgm™"]
L characteristic length of the shell [m] Dsh shell density [kgm ™
L. conductive length of the shell [m} o Stefan’s constant
n, earth surface normal vector @,y spherical coordinates
n, n, external and internal shell normal Q hemispherical solid angle [sr]
vectors Q. solid angle of earth view from the shell
Nup,  average Nusselt number point [sr].
Nu,  local Nusselt number
Pr,;  Prandtl number of the air Subscripts
o heat flux intensity on the shell surface i radiative fluxes index

[Wtm™?] n,m

elements number indices.
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Fig. 1. The scheme for the heat exchange model of the
airships and hot air balloons.

The conductive length L, of the airships or hot air
balloons shells is much smaller than the characteristic
dimension of the shell L :

L_ _ L{k, ‘1"_}72)”2
L= o

> 1. ()]

This allows one, as shown in ref. [2], to neglect the
conductive heat transfer through the cross-section of
the shell and the longitudinal second-order derivatives
of the temperature in the model.

The characteristic time of the changes of the heat
exchange conditions Az, assumed to be much larger
than the thermal time constants of the shell Az, :

304 Can
Al > Ay, = =2 3
h h k‘ +h2 ( )
and that of the internal gas Az, :
Vp,C,
Aty » Af, = —527 4
h B Sh2 ( )

where V is the internal gas volume, S is the heat
trapsfer area of the shell surface, p,, p, are the shell
and the internal gas densities, respectively, C,,
C, are the shell and the internal gas specific heats,
respectively. These conditions allow one to neglect the
time derivatives of the temperature in the heat transfer
model.

Taking into account the assumptions (1)—(4) and
using Lambert’s law for the emissivity, the tem-
perature field model of the shell can be given by the
following equation:
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h{(T—T)+hy(T=T,) +2,6T*

+0,0T* = 2 0+ f f ¢Q,m)Eg(@) ()

where ¢, and ¢, are the external and the internal emiss-
ivities of the shell, respectively, Q; are the heat
fluxes distributions associated with the absorption of
the radiation by the external surface of the shell, n, is
the internal normal vector, o is the vector of the
direction, E,{o) is the radiosity intensity of the inter-
nal surface of the shell in the direction of @ and Q is
the hemispherical solid angle.

The radiosity intensity distribution on the internal
surface of the shell is described by the integral equa-
tion :

Eq(@) = &;,0T ()

1 -
+ -

‘”’H ¢, 1) Ea() (6)
n 0
where T(w) is the shell temperature in the point of the
shell in the direction of vector w, @’ is the direction
vector over which the integration of radiosity is made
for the point of the shell in the direction of @ (Fig. 1).
The average temperature of the internal gas is deter-
mined by the integral equation:

j f d2Shy(T—T,) = —Q, ™
S

where Q, is the power of the internal heat source for
the altitude control mean.

The set of the equations (5)—(7) describes the tem-
perature field of the shell and the temperature of the
internal gas which depend on the radiative fluxes and
the convective heat transfer distributions on the sur-
faces.

3. RADIATIVE FLUXES MODELS

The distribution of the total heat flux £ Q,, included
in equation (3), is determined by the radiative fluxes
on the external surface of the shell: the direct solar
radiation, the earth reflected solar radiation, the
diffuse solar radiation, the infrared radiation of the
carth surface and that of the atmosphere,

3.1. Direct solar radiation
The heat flux associated with the absorption of the
direct solar radiation is given by

Q= ASEO{(e’“\)}+ &)

where E is the direct s‘olar flux which can be evaluated
from the semi-empirical correlations, given in ref. [3],
or from the solution of the radiation transfer
equation, as was reported in ref. [4], (e, m,) is the
scalar product of the sun direction vector e and the
external normal vector



2680

V.
n, vl = 0

is the function which takes into account the self-

shadowing of the shell from the direct solar radiation -

and As is the total solar spectrum absorptivity of the
external surface of the shell.

3.2. Diffuse solar radiation

The heat flux associated with the absorption of the
diffuse solar radiation can be given in the following
form:

O, = AskE, )

where k is the proportionality coefficient which is known
from semi-empirical correlations, given in ref. [3].

3.3. Earth reflected solar radiation

In the approximation which is used in this paper it
is assumed that the earth reflected radiation is not
diminished considerably by the atmosphere absorp-
tion and the scattering along the path from the earth
surface to the shell after reflection. Besides, the reflec-
tion from the earth surface is assumed to be isotropic.

Taking into account the above mentioned assump-
tions it 1s possible to present the absorbed heat flux
associated with the earth reflected solar radiation by
the following expression :

Q3 :chSEO(e’ne) ch sh (]0)
where ¢, 1s the earth albedo, n, is the earth surface
normal vector, (e, n,) is the scalar product of the sun
direction vector and the earth surface normal vector,
dF, 4, is the angle factor between the shell point and
the earth surface which is determined by the following
expression :

1
dFesh'_‘n_J\ dZQ(wanl} (l])
2

where €, is the solid angle of the earth surface view
from the point of the shell surface.

For the analytical evaluation of the angle factor let
us introduce the local coordinate system the origin of

(a)
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which is in the point of the shell surface as is shown in
Fig. 2(a). The positive direction of the z-axis coincides
with the shell external normal direction. The y-axis
resides on the intersection of the shell’s tangent planc
with the horizontal plane. The x-axis is perpendicular
to the plane zOy. The angle ¢ gives the angle deviation
of the direction vector @ from the planc xOy and ¢ is
the circumferential angle.

Assuming the earth surface to be plane and infinite,
let us consider the case when the angle between the z-
axis and the vertical, shown in Fig. 2 as a. is within
the interval 0 < 2 < =/2. For this case it is evident that
the solid angle of the carth surface view conforms to
the surface of the unit sphere between the xOy plane
and the horizontal plane, as shown in Fig. 2(b). Using
the coordinates for the vectors:

n = 0,01
(12)

= {C0oS @ cosiy, cospsiny,sing},

the common expression for the differential of the solid
angle:

d*Q = cospdpdy (13)

and taking into account the symmetry respectively the
plane zOx one can obtain the following expression for
the angle factor:

1 [=2 P max
dF. o = —J dn,bj dpcosgsing
i jo o

1 w2
! f b sin*(@mac@))  (14)

where ¢,,..(¥) is the dependence of the upper limit of
the integration over the angle ¢ on the angle .

The point on the unit semi-sphere surface, con-
forming to the upper limit of the integration over ¢ is
determined by the intersection of the unit sphere:

XP4yiezi =1 (15)

with the horizontal plane:

(b)

F16. 2. The system of the local coordinates on the shell external surface (a) and the unit sphere (1) and
the horizontal plane scheme (2) for the evaluation of the angle factor between the point of the shell and
the earth surface (b).
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(16)

and with the plane, conforming to the coordinate
Y = const:

z=xtga

y=xtgy. amn

The solution of the set of the equations (15)-(17)
allows one to obtain the coordinates of this point.
Using the z-coordinate of the intersection :

(18)

one can straightforwardly obtain the expression for
the upper limit of the integration over the coordinate

Q:

z=tga(l+igiat+tg?y) 2

tga
(1+tg2at+tg’y) s
(19)
Substituting (19) in (i4) and performing the
integration over ¥ one obtains:

dF, 4, = 0.5—0.5(1+1g2a)~ 2

Qumax (¥) = arcsinz = arcsin

0<a<n2. (20

Using the geometrical symmetry and the property
for the sum of the angle factors it is possible to show
that for the angles within the interval /2 < a < = the
angle factor is given as:

dF, , = 0.5+0.5(1+1tg%a)""? n2<a<g

@n

Thus, the angle factor for the shell point and the earth
surface in the general case can be given by:

dF‘e sh — 05

—0.5(1+tg%) "3,
0.5(14+1g’ (m—))~ "2,

0<a<gn2

n2<a<m 22)
3.4. Infrared radiation

Using again the above introduced system of the
spherical coordinates it is possible to obtain the
following expression for the numerical calculation of
the absorbed heat flux, associated with the infrared
radiation:

2n 72
Q,=¢ J dd/[ dfpcoswsinq)f dil (@, ¥)
0 0 Y
(23)

where A/, is the infrared radiation wavelength interval.
Neglecting the atmosphere scattering and using the
model of the plane layer [5], the monochromatic inten-
sity of the incident radiation can be given by the
integral form of the radiation transfer equation:

4

o di
L. ¥) = I (o, ¥)exp {“LO a(h) (w,ee)}

I %o daw ) dh
* ﬂﬁ;, () Ew (i) exp {_ﬁ %) G, ec)}(w, e)
(24)

where £, (h) is the spectral intensity of the black body
radiation, (@, e.) is the scalar product of the direction
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vector @ and the vector of earth direction e, which is
given by the expression :

(w,e) =cospcosysina—sinpcosa, (25)

and £ is the altitude from the earth surface. The limits
of the integration over 4 are given by :

05
hy = {oo,

where H is the altitude of the airship or hot air balloon
drift.

The value of the intensity 7y,(¢,¥) on the earth
surface, limiting the integration region in the case
(w,e.;) > 0, and on the infinity in the case (w,e.) <0
can be presented by the expression :

(w,e.) >0

"
(w,6) <0 iy

(26)

T I(Eel(Te) + (1 _ai)Er)’ ((!), ee) >0
10&((/)’ l/’) = {0, ((D, ee) <0
@7

where E,, = ¢,E,,(T,) is the spectral intensity of the
earth surface radiation, determined by the earth
temperature T, in accordance with Planck’s black
body radiation law and by the earth surface spectral
emissivity &;, E¥ is the monochromatic flux of the
downcoming infrared radiation from the above laying
atmosphere at the earth surface level [6].

The altitude distributions of the monochromatic
atmospheric absorptance and the atmospheric tem-
perature which determine the infrared atmospheric
emittance, used in this model, are assumed as known
(e.g. from ref. [6]).

4. NUMERICAL APPROXIMATION AND
ITERATIVE ALGORITHM

4.1. Numerical approximation

For the solution of the problem let us introduce the
system of the coordinates whose centre coincides with
the centre of the airship (Fig. 3). The Z-axis is directed
to the bow of the airship and coincides with the axis
of the cylindrical symmetry of the shell. The x-axis is
directed vertically. The y-axis is directed horizontally,
as shown in Fig. 3. The temperature of the shell can
be considered in the two-dimensional cylindrical sys-
tem of the coordinates, presented by the Z-axis and by
the angle f, counted from the negative direction of
the j-axis. The sun position is given by the two angles.
The angle 3 gives the deviation of the vector e from
the horizontal plane Oy and the angle y presents the
deviation of the e-projection on the X0y plane from
the j-axis. Hence, the sun direction vector e is given

by the coordinates as follows
e = {sinY,cos $cosy,cos §siny}. (28)

The shell surface is given by the dependence
R = R(Z) which is assumed to be known.
For the approximation of the problem let us intro-

duce the finite elements of the shell AS,,
(n=1,...,N; m=1,...,M). The boundary coor-
dinates of the elements are given by z, (n =0, ..., N)
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F16. 3. The scheme for the approximation of the problem.

and B, (m=0,...,M). For any element, the tem-
perature 7, and the convective heat exchange co-
efficients 4,,,, and 4., are assumed to be constant.
Performing the integration of the equations (5) and
(6) over the element surface AS,,, and using for the
integral (7) the sum over the shell surface, one can
obtain the following approximation of the problem :

hlltm(Tnm - Ta:) +h2nm(Tnm - Tg)

4
+8I0T:m+626T:m = Z Qinm
i=1

N M
+82 Z z Eefn'm'El’m'—nm (29)

n=1m=]
N M
Eefn’m’ = 820T:’m’ + (l _82) Z Z Eeth"m"Fn”m”—n’m’
wW=1m"=1

(30)

N M

Z Z thm(Tnm_Tg) = _Qv (31)

n=1m=1

where the values of the elements areas are expressed
through the coordinates f§, Z and the known depen-
dence R(%) as

Bui1 [Znin
AS,, = J J RG)(1+(dR/d2)?) 2 ddz. (32)
B £

The average values of the heat fluxes associated
with the radiation on the shell elements are given by
the following expressions.

(i) For the direct solar radiation

Q_ ASEO AT R(_)
m T o z
M AS J s,

x (1+(dR/d2)?)""*{(e,mn))} * dfdz (33)

where the vector of external normal n, 1s given by

n, = (l—}—(—de/EiFZ)W {cosB,sin B, —dR/dZ}. (34)
(i1) For the diffuse solar radiation
Qo = ASKE,. (35)
(iii) For the earth reflected solar radiation
Osum = Asd.Eo(e,n)E, (36)

where the earth-element angle factor is given by

1 Bt [ Zasr
- dr,
e-nm AS,,m o 5 ¢ sh (CX)

x R()(1+(dR/d5*)'*dBdz  (37)

where the angle o between the external normal vector
n, and the vertical x-direction is expressed by :

o= arccos()l +(;;);d[%)-z)jﬂ (38)
(iv) For the infrared radiation
_ 1 By [Zar
Qam = KSnm_Lm f Qanm(B, 2)R(Z)
x (1+(dR/d5)H)V?dBdz. (39)

4.2. Elements angle factors

The elements angle factors, introduced in cqua-
tions (29) and (30), are determined by the following
integrals

1
AS, J Ls o, (@.n2)

F,
(40)

Let us obtain the angle factors values using the
above introduced system of the coordinates § and Z.
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The differential of solid angle d’Q is expressed
through the differential of the surface area d>S” as:

* ,
g = @Hm) S (41)
where n) is the vector of the internal normal in the
point of intersection of the @ direction with the
elements AS,,, @* is the vector opposite to @, and a
is the distance between the reception point A on the
element AS,,, and the emitting point A’ on the element
AS,.,. (Fig. 3).

Expressing all values in (40) and (41) through the
coordinates f and Z one can obtain the following
expression :

B 1 Brvr [Zner [Posr [Zwet (e, m5) (0™, 1)
TAS, s, )i )z na’

x R(Z)(1 +(dR/d2)%) 2R (Z)
x (1+(dR/dz)?) V2 dpdzdp dz’

F, n'm' —nm

42)
where
a® = (R(%)cos f— R(Z) cos f')?

+(R(Z) sin f— R(Z) sin B+ (—2)2.

The vectors n,, n,, @ have the coordinates, respectively

(43)

0= é {R(Z")cos B’ — R(2) cos B, R(Z) sin '

—R(@)sinp,z’ -z} (44)
1

n, = A T@RAH™ {—cos f, —sin B,dR/dZ}
(45)
1
n, = (1 @RIAT)H ™ {—cos f', —sinf’,dR/dz"}
(46)

where f, 7 are the coordinates of the reception point
A and f', 7 are the coordinates of the emitting point
A

4.3. Numerical algorithm
For the solution of equations (29)-(31) the fol-
lowing numerical iterative algorithm is used.

(1) Introducing the initial data. Computation of
the average values of the convective heat transfer co-
efficients A, A3,.,, Of the heat fluxes on the elements
surface O 1m» O 2ums O anm> O anms associated with radi-
ation fluxes.

(2) Computation of the angle factors for the finite
elements of the shell F,,,_,,..

(3) Introducing the initial approximation for the
value of average temperature of the internal gas 7.

(4) Introducing the initial approximation for the
internal radiosities of the shell elements E_;,,, .. = 0.

(5) The iterative calculation of the elements tem-
peratures 7, by the Newton—Raphson technique [7].

(6) The solution of the set of the lincar equations
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for the elements radiosities using the temperature
values obtained in step (5).

(7) The return to step (5) till the convergence of the
temperature values.

(8) The calculation of the average temperature of
the internal gas from equation (31).

(9) The return to step (4) till the convergence of
the average temperature of the internal gas.

5. TEMPERATURE REGIMES OF THE AIRSHIP

The above described model and the iterative pro-
cedure were used for the modelling of the temperature
fields in the shell of the airship whose surface was
approximated by the spheroid. The ratio of the spher-
oid big axis to the small one for the studied geometry
case was chosen to be equal to 4.

5.1. Convective heat transfer coefficients evaluations

In Figs. 4(a) and (b) the calculated distributions
of the external heat transfer coeflicients are shown.
Figure 4(a) shows the longitudinal distribution of the
heat transfer coefficient under the forced convection
for different values of the airship speed. For the cal-
culation the model of the axially symmetric non-com-
pressible airflow was used because the Mach number
is assumed to be much smaller than unity [8] for
the simulated operational conditions. For the energy
transfer equation the isothermal boundary condition
was used. The influence of the temperature non-uni-
formity in the shell on the convective heat transfer
distribution was neglected. The distribution of the
pressure along the dynamic boundary layer was taken
from ref. [8]. The numerical solution of the dynamic
and temperature boundary layers was carried out
using the code of Patankar and Spalding {9].

As can be seen in Fig. 4(a), the heat transfer co-
efficient has the maximum in the bow of the airship
and is diminishing in the region where the pressure
gradient decreases. After the region of the fast decreas-
ing the region of the monotonous decreasing of the
convective heat transfer takes place. In the stern of the
airship there is another region of the fast decreasing in
the distribution of #,, where the increase of the ther-
mal resistivity of the temperature boundary layer
takes place due to the intensive growth of the dynamic
boundary layer.

Figure 4(b) shows the circumferential distribution
of the heat transfer coefficient under the natural con-
vection for the different values of the temperature
difference between the average shell temperature and
the airflow temperature. This distribution was cal-
culated using the dependence for the laminar and
turbulent natural convection of the horizontal cylin-
ders, developed in ref. {10] by Raithby and Hollands

Nu, = C.A(B)Ra** 47)

where A(f) = 0.71(cos B)*** for = —90° to 19°
and A(B) = (sin B)*** for B =19-90°, C, = min
(0.14 Pr2°%, 0.15), Pry = p,; paiCai/ks; is the Prandtl
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F16. 4. Convective heat transfer coefficient on the external surface of the shell:

(a) the heat transfer

coefficient vs dimensionless length from the bow of airship for the case of the forced convection ; (b) the
heat transfer coefficient vs polar angle § for the case of the natural convection,

number for the air, Nu, = hl/k,; is the dimensionless
local Nusselt number and
3

is the local Rayleigh number, where / = (f+n/2)R
is the circumferential length, counted from the bottom
point of the shell, and AT is the difference between
the air and the average shell temperature.

The internal heat transfer coefficient was estimated
using the following dependence for the horizontal
cylinders, given in ref. [11]

Nuip, = 0.59Ra>* (48)

where Nuy, -—-EZD,/kg is the average dimensionless
Nussclt number inside the shell and Rap, is the inter-
nal Rayleigh number, which includes the thermo-
physical properties of the internal gas and the tem-
perature difference between the average shell
temperature and the average temperature of the inter-
nal gas T,. For the diameter in Rayleigh number the
reduced value D, was used. This reduced value was
obtained from the équivalence of the surfaces and the
volumes between the spheroid and the cylinder. The
average internal heat transfer coefficient was evalu-
ated to be within the interval /1, = 3-5 Wtm— 2K ',
depending on the average temperature of the shell.

5.2. Temperature fields in the shell

In Figs. 5(a) and (b) the longitudinal temperature
distributions in the airship shell under forced con-
vective heat transfer for the airship motion speed

U=20ms' (Fig.5(@)) and U = I ms ' (Fig. 5(b))
for different sun directions arc shown. For the case of
Figs. 5(a) and (b) the sun direction angles are § = 60,

= 90". The total solar radiation is E, = 1170 Wt
m °, the carth reflected solar radiation is d.E,(e.
n) =420 Wt m~°, the diffuse solar radiation is
KE, =90 Wt m > The downcoming infrared radi-
ation flux is evaluated to be 355 Wt m " *. The upper-
coming infrared radiation flux is evaluated to be 400
Wt m > The air temperature is 7, = 15°C. The total
solar radiation absorptivity of the shell is As = 0.55
and the shell emissivities are &, = ¢, = 0.45. The inter-
nal convective heat transfer coefficient is assumed to
beh,=5Wtm 2K

The case of Fig. 5(a) shows the temperature field
with the maximum value T,,,, = 299.5 K. The differ-
ence between the maximal and the minimal tem-
perature values is 11.5 K. In the middle part of the
shell the longitudinal distribution is nearly uniform,
the longitudinal temperature difference does not
cxceed 3 K. The main temperature differences are
localized in the bow and in the stern of the airship. In
Fig. 5(b) the longitudinal temperature distributions
for U= 1 ms™"are shown. The maximal temperature
is T.x = 350 K and the shell maximal temperature
difference is 40 K. For these heat exchange conditions
the temperature longitudinal uniformity in the middle
part of the shell takes place except in the bow and the
stern of the airship. The circumferential temperature
distribution has rather high non-uniformity due to the
non-uniformity of the radiative fluxes on the shell
surface.
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F1G. 6. The temperature distribution for different polar
angles vs dimensionless length from the bow of airship for
the case of the natural convection.

In Figs. 6(a) and (b) the temperature longitudinal
distributions in the shell for the natural convective
heat exchange are shown. For Fig. 6(a) the sun direc-
tion angles are 3 = 60°, y = 90°. The maximal tem-
perature value is 7,,,, = 368 K. For the case of Fig.
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6(b) the sun direction angles are 9 = 60°, y = 0°. The
maximal temperature is T,,,, = 366 K.

The numerical simulation of the heat exchange of
the airship shows that there are two main interplaying
effects on the temperature field of the shell and the
average temperature of the internal gas. The first one
is determined by the ratio of the local heat flux associ-
ated with the external radiation to the local convective
heat exchange coefficient. If the region of the maximal
heat flux coincides with the region of the minimal
convective heat transfer the higher temperature
field in the shell takes place. This leads to the higher
average temperature of the internal gas. For the case
of forced convection this situation takes place when
the airship is oriented to the sun by the stern.

The second effect is determined by the total heat
flux incoming on the surface of the airship which is
proportional the shell projection area on the plane,
perpendicular to the sun direction. This effect is also
associated with the airship orientation relative to the
sun direction. The higher temperatures take place
when the big axis of the airship is perpendicular to
the sun’s direction.

5.3. Contribution of the internal radiative heat transfer

The contribution of the internal radiative heat
transfer in the temperature field of the shell should be
pointed out. For high heat transfer on the external
surface of the shell under forced convection the tem-
perature fleld is nearly uniform. In these operating
conditions the radiosity field on the internal surface is
nearly uniform, too, and can be given by the following
approximation:

E; =~ aT* = const (49)
where T= S~ ' [{, Td>S is the average temperature
of the shell.

The parametric analysis of the model shows that
this approximation of the internal radiative heat

transfer is valid only when the following relation is
fulfilled :

T
— a2
max £ Q; 50 (50)

where i* = h,+#, is the total average convective heat
transfer coefficient for both sides of the shell,
T*= (hT,+h,T)/(h,+#,) is the reduced ambient
temperature near the shell and max Z Q; is the maxi-
mal heat flux intensity on the shell surface.

For the operating conditions fulfilling the relation
(50), the relative error in the temperature field, given
by the uniform approximation, does not exceed 1%.
The relation (50) is fulfilled when the total heat trans-
fer coefficient is #* > 80 Wt m 2 K~ '. This, for the
given conditions, takes place if the speed of the airship
motion ¥ > 100 m s~
If the relation (50) is not fulfilled, the uniform
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approximation of the radiative heat transfer inside the
shell is not valid and gives more considerable errors
in the temperature fields of the shell. This takes place
for the low motion speeds of the airship and for the
natural convection heat exchange regime. All the tem-
perature fields, presented in Figs. 5 and 6 conform to
the operating conditions, requiring the calculations of
the radiative heat transfer equation inside the shell.
The uniform approximation is not valid for the above
simulated conditions due to the low convective heat
transfer and, as a consequence, to the temperature
non-uniformity of the shell.

There is another case of the applicability of the
uniform approximation for the internal radiative heat
transfer in the shell, which should be indicated here.
This case takes place when the geometry of the hot
air balloon shell is nearly spherical. For this case the
uniform approximation of the internal radiative heat
transfer is valid for any operating conditions, because
the radiative flux inside the shell is uniform for any
temperature fields in the shell due to the spherical
geometry, as indicated in ref. [5]. The concrete
cxpression for the internal radiative flux inside the
shell for the spherical geometry is presented in ref. [5].

6. SUMMARY AND CONCLUSIONS

In this paper the mathematical model of the steady
state thermal regime of airships and hot air balloons
shells is developed. The model includes the tem-
perature field equation of the shell, the integral equa-
tion for the radiative heat exchange on the internal
surface of the shell and the convective heat exchange
equation between the shell and the internal gas. The
model includes the following radiation fluxes on the
external surface of the shell : the direct solar radiation,
the earth reflected solar radiation, the diffuse solar
radiation, the infrared radiation of the earth surface
and that of the atmosphere layer. For the calculation
of the convective heat exchange coefficients the known
computational technique and criterial dependences
are used.

For the solution of the problem the numerical iter-
ative procedure is developed. For the approximation
finite elements are used. The numerical algorithm of
the solution presents the enclosed iterative procedures
of the calculations of the elements temperature values,
the elements radiosities and the average temperature
of the internal gas.

As an example, the developed model and the
numerical procedure are used for the simulation study
of the steady state temperature fields of the airship
shell under the forced and natural convective heat
exchange conditions on. The obtained results show
two kinds of the heat exchange interplaying effects on
the temperature field of the shell and on the average
temperature or the internal gas. The first is determined
by the ratio of the local surface heat flux associated
with the radiation to the convective heat exchange
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intensity. The temperature of the shell and of the
internal gas would be higher. if the region of maximal
heat flux coincides with the region of the minimal
convective heat transfer. The second effect is deter-
mined by the integral heat flux incoming on the shell
surface. The temperature of the shell and of the inter-
nal gas would be higher, if the big axis of the airship
is perpendicular to the sun direction and the solar
energy incoming is maximal.

The contribution of the internal radiative heat
transfer, introduced in the model, is studied. It is
shown that for the thermal regime with the intensive
convective hecat exchange and, as a consequence, with
the uniform temperature field in the shell the internal
radiative heat transfer can be presented by the uni-
form approximation. In accordance with this approxi-
mation the radiosity distribution inside the shell can
be given by the constant value, dependent only on the
average temperature of the shell. This approximation
is valid only for the high motion speeds of the airships
and cannot be used for the low speed regime and for
the case of the natural convection heat transfcr on
the external surface of the shell. Hence, the internal
radiative heat transfer is shown to be important factor
in the heat transfer model of the airships and hot
air balloons. The internal radiative heat transfer in
general case must be taken into account using the
integral equation of the radiative heat transfer, except
the case of the very high convective heat transfer from
the external surface of the shell and, also, the case,
when the shell shape is nearly spherical. In these two
special cases the radiative heat transfer can be cor-
rectly described by the uniform approximation for the
internal radiative flux intensity on the shell surface.
This approximation allows one to facilitatc con-
siderably the performance of the iterative algorithm
and the computations of the temperature fields in the
shells.
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LE MODELE STATIONNAIRE POUR LE REGIME THERMIQUE DES ENVELOPPES
DES DIRIGEABLES ET DES BALLONS

Résumé—Le modéle stationnaire pour le régime thermique des enveloppes des dirigeables et des ballons
est élaboré. Le modeéle comprends les equations suivantes : I'equation differentielle de la distribution de la
température dans I’enveloppe, 'equation intégrale pour I'échange thermique par la radiation au-dedans
de I'enveloppe et equation pour I’échange thermique par la convection entre 'enveloppe et le gaz interieur.
Le modéle considére les fluxes suivants de la radiation sur la surface exterieure de 'enveloppe : la radiation
solaire directe, 1a radiation solaire reflectée par la surface de la terre, la radiation solaire diffusée, la
radiation infrarouge de la terre et de 'atmosphere. Pour I’évaluation de la radiation infrarouge le modéle
de la couche plane est usée. L’échange convectif sur la surface exterieure de 'enveloppe est consideré pour
les cas de la convection forcée et naturelle. Pour la solution numerique la procédure itérative est élaborée.
Le modéle et la procédure itérative sont appliqués pour la simulation des champs de la température dans
I’enveloppe du dirigeable en conditions de I’échange thermique par la convection forcée et naturelle.

DAS STATIONARE MODELL DER WARMEARBEITSWEISE DER HULLEN VON
LUFTSCHIFFEN UND LUFTKUGELN

Zusammenfassung—Inder Arbeit entwickeltet man des stationdre Modell der Wirmearbeitsweise der
Hiillen der Luftschiffen und Luftkugeln. Das Modell einschaltet drei Gleichungen: die Gleichung der
temperaturischen Rerteilung in der Luftschiffhillle oder Luftkugelhiille, die Integralgleichung fiir die
Strahlen Strome an der inner Oberfliche von Hille und die Integralgleichung des konvektiven Wiar-
meaustausch zwischen der Hiille und dem inneren Gas. In der Modell betrachtet man die Strahlenstréme
an der auBerlich Oberfliche von der Hiille: die gerade Sonnenstrahlung und reflektierte von der Erdeo-
berfliche, die diffusione Sonnenstrahlung und Intrarotstrahlung von Erdeoberfliche und Atmosphire.
Man verwendet fiir die Berechnung von der Infrarotstrauhlung der Atmosphire das Modell der flachen
Schicht. Die konvectiven Wirmeaustausch betrachtet man an der auBerlich Oberfldche von der Hiille fur
der Falle der erzwungenen und naturlichen konvection. Fur die Losung des gewiesenen System von
Gleichungen wird die ZahlenmiBig iterationene Prozedur entwickelt. Das Modell und die zahlenméBige
Methode nutzt man fir die imitationen Forschungen der temperaturischen Feedern in der Hiille des
Luftschiffes, in der Bedingungen erzwungener und naturlichen konvektiven Wirmeaustausch aus.

JUHAMUYECKUE MEXAHU3MbI BOSHUKHOBEHWNSA TEMITEPATYPHBIX ITEPENAJOB
MPU OAHOPOJHBIX YCJIOBUAX TEILIOOBMEHA

Amnoraums—B  craTbe DpoOBOOMTCS  aHAJM3  AMHAMHYECKHX  MEXAaHH3MOB  BO3HHKHOBCHHS,
TeMIepaTyPHBIX NEPENaZoB MEXAY KOHCTPYKTHBHBIMH 3JIEMEHTaMH, HaXONALUHMHCH B OJHOPOXHBIX
yCIAOBHAX TemwiooGMeHa. B craimoHapHBIX OJHOPOIHLIX YCJIOBHAX TEIUIOOOMEHa TEMIIEPATYPHbIE
nepenagbl MEXIy IEMEHTAMH OTCYTCTBYIOT, HO BO3HHKAIOT B IMHAMHYECKMX YCHOBHAX. Ilpmunuoi
BO3HMKHOBEHHsl 3THX MEPENafioB SBJIAETCH pa3jiMdMe IOCTOSHHLIX BpeMeHH. B paborte mposeneHbt
OLIEHKH BO3HHMKAIOIUMX TEMIEPATYPHBLIX MEPENaxoB NPH CKAYKOOOPAa3HbIX H NEPHOIHYECKHX H3MEHEHHAX
CNeayIoUMX YCIOBHH TEIWI006MEHA: TeMIepaTyphl IOTOKA BO3[yXa, HHTEGHCHBHOCTH TCILUIOBLINCIICHHS,
HHTCHCHBHOCTH KOHBEKTHBHOH TEIUIOOTAAYH. IMonyyens AHAJHMTHYECKAC BBIPaXXCHHS,
YCTaHABMBAIOLINE CBA3L BO3ZHMKAIOUIMX TEMIEPATYPHLIX [MEpeNajgoB C YCIOBHAMH TeriooGMeHa.
Iloka3zaHo, 4TO TeMNEpAaTypHble Nepemansl Majbl B ABYX MNpEIENbHBIX ciydasx. Bo-mepBrbix, mpu
peXuMax, Korja IOCTOAHHBIE BPEMEHM BCEX 3JIEMEHTOB MHOro Oosblle nepHoaa H3MEHEHHs
napaMeTpoB Temioo6MeHa. Bo-BTOpBIX, MPH peXHMAX, KOTAAa MOCTOSHHBIE BDEMEHH BCEX JJIEMEHTOB
MHOT'0 MEHblIIe TIEPHOJa H3MEHEHHH YCIIOBHI TelwooOMeHa.



